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Fig. 1: DemoGen is a fully synthetic approach for automatic demonstration generation. DemoGen promotes the spatial generalization ability
of visuomotor policies and can facilitate one-shot imitation by adapting one human-collected demonstration into novel object configurations.
DemoGen applies to various manipulation tasks and platforms and can be extended to enable additional out-of-distribution capabilities.

Abstract—Visuomotor policies have shown great promise in
robotic manipulation but often require substantial human-
collected data for effective performance. A key factor driving
the high data demands is their limited spatial generalization
capability, which necessitates extensive data collection across dif-
ferent object configurations. In this work, we present DemoGen,
a low-cost, fully synthetic approach for automatic demonstration
generation. Using only one human-collected demonstration per
task, DemoGen generates spatially augmented demonstrations
by adapting the demonstrated action trajectory to novel object
configurations. Visual observations are synthesized by leveraging
3D point clouds as the modality and rearranging the subjects
in the scene via 3D editing. Empirically, DemoGen significantly
enhances policy performance across a diverse range of real-world
manipulation tasks, showing its applicability even in challenging
scenarios involving deformable objects, dexterous hand end-
effectors, and bimanual platforms. Furthermore, DemoGen can
be extended to enable additional out-of-distribution capabilities,
including disturbance resistance and obstacle avoidance.

I. INTRODUCTION

Visuomotor policy learning has demonstrated remarkable
competence for robotic manipulation tasks [7, 61, 16, 59], yet
it typically demands large volumes of human-collected data.
State-of-the-art approaches often require tens to hundreds of
demonstrations to achieve moderate success on complex tasks,

such as spreading sauce on pizza [7] or making rollups with
a dexterous hand [59]. More intricate, long-horizon tasks may
necessitate thousands of demonstrations [62].

One key factor contributing to the data-intensive nature of
these methods is their limited spatial generalization [41, 43]
ability. Our empirical study suggests that visuomotor poli-
cies [7], even when coupled with pre-trained or 3D visual
encoders [33, 39, 34, 59], exhibit limited spatial capacity,
typically confined to regions adjacent to the demonstrated ob-
ject configurations. Such limitation necessitates repeated data
collection with repositioned objects until the demonstrated
configurations sufficiently cover the full tabletop workspace.
This creates a paradox: while the critical actions enabling
dexterous manipulation are concentrated in a small subset of
contact-rich segments, a substantial portion of human effort is
spent teaching robots to approach objects in free space.

A potential solution to reduce redundant human effort is
to replace the tedious relocate-and-recollect procedure with
automatic demonstration generation. Recent advances such as
MimicGen [32] and its subsequent extensions [20, 18, 22]
have proposed to generate demonstrations by segmenting the
demonstrated trajectories based on object interactions. These
object-centric segments are then transformed and interpolated
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into execution plans that fit desired spatially augmented object
configurations. The resulting plans are then executed through
open-loop rollouts on the robot, termed on-robot rollouts, to
verify their correctness and simultaneously capture the visual
observations needed for policy training.

Despite their success in simulation, applying MimicGen-
style strategies to real-world environments is hindered by the
high costs of on-robot rollouts, which are nearly as expensive
as collecting raw demonstrations. An alternative is to deploy
via sim-to-real transfer [36, 44, 56], though bridging the sim-
to-real gap remains a significant challenge in robotics.

In this work, we introduce DemoGen, a data generation
system that can be seamlessly plugged into the policy learning
workflow in both simulated and physical worlds. Recognizing
the high cost of on-robot rollouts represents a major barrier
to practical deployment, DemoGen adopts a fully synthetic
pipeline that efficiently concretizes the generated plans into
spatially augmented demonstrations ready for policy training.

For action generation, DemoGen develops the MimicGen
strategy by incorporating techniques from Task and Motion
Planning (TAMP) [10, 5, 31], similar to the practice in the
recently released SkillMimicGen [18]. Specifically, we decom-
pose the source trajectory into motion segments moving in
free space and skill segments involving on-object manipulation
through contact. During generation, the skill segments will be
transformed as a whole according to the augmented object
configuration, and the motion segments will be replanned via
motion planning to connect the neighboring skill segments
after transformation.

With the processed actions in hand, a core challenge is
obtaining spatially augmented visual observations without
relying on costly on-robot rollouts. While some recent work
leverages vision foundation models to manipulate the appear-
ance of subjects and backgrounds in robotic tasks [55, 4, 2],
these techniques are not directly applicable to modifying the
spatial locations of objects in an image, as 2D generative
models generally lack awareness of 3D spatial relationships,
such as perspective changes [52].

DemoGen employs a more straightforward strategy: it se-
lects point clouds as the observation modality and synthesizes
the augmented visual observations through 3D editing. The
key insight is that point clouds, which inherently live in the 3D
space, can be easily manipulated to reflect the desired spatial
augmentations. Generating augmented point cloud observa-
tions is reduced to identifying clusters of points corresponding
to the objects or robot end-effectors and then applying the
same spatial transformations used in the generated action
plans. Notably, this strategy also applies to contact-rich skill
segments, as parts in contact are treated as cohesive clus-
ters that undergo uniform transformations. Furthermore, the
artificially applied transformations on point clouds accurately
reflect the underlying physical processes, thereby minimizing
the visual gap between real and synthetic observations.

Empirically, we manifest the effectiveness of DemoGen by
evaluating the performance of visuomotor policies trained on

DemoGen-generated datasets from only one human collected
demonstration per task. To assess the impact of DemoGen
on spatial generalization, we adhere to a rigorous evaluation
protocol in which the objects are placed across the entire
tabletop workspace within the end-effectors’ reach.

We conduct extensive real-world experiments, showing that
DemoGen can be successfully deployed on both single-arm
and bi-manual platforms, using parallel-gripper and dexterous-
hand end-effectors, from both third-person and egocentric
observation viewpoints, and with a range of rigid-body and
deformable/fluid objects. Meanwhile, the cost of generating
one demonstration trajectory with DemoGen is merely 0.01
seconds of computation. With such minimal cost, DemoGen
significantly enhances policy performance, generalizing to
un-demonstrated configurations and achieving an average of
74.6% across 8 real-world tasks. Additionally, we demon-
strate that simple extensions under the DemoGen framework
can further equip imitation learning with acquired out-of-
distribution generalization capabilities such as disturbance
resistance and obstacle avoidance. The code and datasets will
be open-sourced to facilitate reproducibility of our results.
Please refer to the project website for robot videos.

II. RELATED WORKS

A. Visuomotor Policy Learning

Represented by Diffusion Policy [7] and its extensions [59,
24, 37, 50, 47], visuomotor policy learning refers to the imita-
tion learning methods that learn to predict actions directly from
visual observations in an end-to-end fashion [27]. The end-to-
end learning objective is a two-edged sword. Its flexibility
enables visuomotor policies to learn dexterous skills from
human demonstrations, extending beyond rigid-body pick-and-
place. However, the absence of structured skill primitives
makes such policies intrinsically data-intensive.

The conflicts between the huge data demands and the great
expense of robotic data collection have driven the growing
attention to data-centric research. Such efforts include more
efficient data collection systems [9, 6, 28], collaborative gath-
ering of large-scale datasets [35, 25], and empirical studies on
data scaling [62, 29]. Instead of scaling up via pure human
labor, DemoGen aims to show that synthetic data generation
can help save much of the human effort.

B. Data-Efficient Imitation Learning

Attempting to develop manipulation policies from only a
handful of demonstrations, data-efficient imitation learning
methods often build on the principles of Task and Motion
Planning (TAMP), while incorporating imitation learning to
replace some components in the TAMP pipeline. A com-
mon approach is to learn the end-effector poses for picking
and placing [60, 42, 51, 53, 17]. The whole trajectories
are generated using motion planning toolkits [26] and then
executed in an open-loop manner. Some methods extend this
idea to more complex scenarios by learning to estimate the
states of manipulated objects in the environment and replaying
demonstrated trajectory segments centered around the target
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Fig. 2: Qualitative visualization of the spatial effective range. The grid maps display discretized tabletop workspaces from a bird’s-eye
view under different demonstration configurations. Dark green spots mark the locations where buttons are placed during the demonstrations.
Each grid cell corresponds to a policy rollout with the button placed at that location. Blue, yellow, green, and gray grids denote successful
executions for the Button-Large, Button-Small, both tasks, and no tasks, respectively.

objects [23, 45, 11, 12]. While these approaches are effective
for simpler, Markovian-style tasks [46], their reliance on open-
loop execution limits their application to more dexterous tasks
requiring closed-loop retrying and re-planning.

In contrast, DemoGen leverages the TAMP principles for
synthetic data generation. Subsequently, the synthetic demon-
strations are used to train closed-loop visuomotor policies for
task resolution. In this way, DemoGen effectively combines
the merits of both approaches.

C. Data Generation for Robotic Manipulation

Automated demonstration generation offers the opportunity
to breed capable visuomotor policies with significantly re-
duced human efforts. A branch of recent works attempts to
generate demonstrations by leveraging LLM for task decom-
position and then using planning or reinforcement learning for
subtask resolution [48, 21, 49]. While this paradigm enables
data generation from the void, the resulting manipulation skills
are often restricted by the capacity of either LLM, planning,
or reinforcement learning.

An alternative line of research is exemplified by Mimic-
Gen [32] and its extensions [20, 18, 22]. Unlike generating
demonstrations from the void, MimicGen adapts some human-
collected source demonstrations to novel object configurations
by synthesizing corresponding execution plans. This approach
is theoretically applicable to a wide range of manipulation
skills and object types. For example, DexMimicGen [22]
extends MimicGen’s strategy to support bi-manual platforms
equipped with dexterous hand end-effectors. However, exe-
cution plans produced by the MimicGen framework are not
ready-to-use demonstrations in the form of observation-action
pairs. To bridge this gap, the MimicGen family [32, 20, 18, 22]
relies on costly on-robot rollouts, which poses significant
challenges for the deployment on physical robots.

Building upon MimicGen and its extensions, DemoGen
incorporates their strategies for generating execution plans,
but replaces the expensive on-robot rollouts with an efficient,
fully synthetic generation process. This enables DemoGen to
generate real-world demonstrations ready for policy training
in a cost-effective manner.

III. EMPIRICAL STUDY: SPATIAL GENERALIZATION OF
VISUOMOTOR POLICIES

In this section, we present an empirical study examining the
spatial generalization capability of visuomotor policies. We
demonstrate how the lack of such generalization contributes
to the data-intensive nature of learning visuomotor policies.

A. Visualization of Spatial Effective Range

Spatial generalization refers to the ability of a policy to
perform tasks involving objects placed in configurations that
were not seen during training. To gain an intuitive under-
standing of spatial generalization, we visualize the relationship
between the spatial effective range of visuomotor policies and
the spatial distribution of demonstration data.

Tasks. We evaluate a Button-Large task adapted from the
MetaWorld [54] benchmark, where the robot approaches a
button and presses it down. The object randomization range is
modified to a 30 cm × 40 cm = 1200 cm2 area on the table-
top workspace, covering most of the end-effector’s reachable
space. Noticing the large size of the button makes it pressed
down even if the press motion does not precisely hit the center,
we also examine a more precision-demanding variant, Button-
Small, where the button size is reduced by a factor of 4.

Policy. We adopt 3D Diffusion Policy (DP3) [59] as the stud-
ied policy, as our benchmarking results indicate that 3D ob-
servations provide superior spatial generalization compared to
2D approaches. Training details are provided in Appendix A1.

Evaluation. To visualize the spatial effective range, we uni-
formly sample 21 points along each axis within the workspace,
resulting in a total of 441 distinct button placements. Demon-
strations are generated using a scripted policy, with 4 different
spatial distributions ranging from single to full. The
performance of each configuration is evaluated on the 441
placements, enabling a comprehensive assessment of spatial
generalization. The visualization result is presented in Fig. 2.

Key findings. Overall, the spatial effective range of visuo-
motor policies is closely tied to the distribution of object
configurations seen in the demonstrations. Specifically, the
effective range can be approximated by the union of the areas
surrounding the demonstrated object placements. Thus, to train



a policy that generalizes well across the entire object random-
ization range, demonstrations must cover the full workspace,
resulting in substantial data collection costs. Furthermore,
as task precision requirements increase, the effective range
shrinks to more localized areas, necessitating a greater number
of demonstrations to adequately cover the workspace. A more
detailed analysis is available in Appendix B1.

B. Benchmarking Spatial Generalization Capability

The practical manifestation of the spatial generalization
is reflected in the number of demonstrations required for
effective policy learning. In the following benchmarking, we
explore the relationship between the number of demonstrations
and policy performance to determine how many demonstra-
tions are sufficient for effective training.

Tasks. To suppress the occurrence of inaccurate but successful
policy rollouts, we design a Precise-Peg-Insertion task that
enforces a strict fault tolerance of 1 cm during both the picking
and insertion stages, asking for millimeter-level precision. The
peg and socket are randomized within a 40 cm× 20 cm area,
yielding an effective workspace of 40 cm×40 cm = 1600 cm2.
To examine the influence of object randomization, we also
consider a half workspace, where the randomization range
is halved for both objects, and a fixed setting, where object
positions remain fixed. More details are listed in Appendix B3.

Policies. In addition to Diffusion Policy (DP) [7] and 3D
Diffusion Policy (DP3) [59] trained from scratch, we explore
the potential of pre-trained visual representations to enhance
spatial generalization. Specifically, we replace the train-from-
scratch ResNet [19] encoder in DP with pre-trained encoders
including R3M [33], DINOv2 [34], and CLIP [39]. Detailed
implementations are provided in Appendix A2.

Demonstrations. We vary the number of demonstrations from
25 to 400. The object configurations are randomly sampled
from a slightly larger range than the evaluation workspace to
avoid performance degradation near workspace boundaries. A
visualization is provided in Fig. 17 in the appendix.

Evaluation. In the full workspace, both the peg and socket
are placed on 45 uniformly sampled coordinates, resulting in
2025 distinct configurations for evaluation. For the half and
fixed settings, the number of evaluated configurations is 225
and 1, respectively. The results are presented in Fig. 3.

Key findings. The degree of object randomization significantly
influences the required demonstrations. Therefore, an effective
evaluation protocol for visuomotor policies must incorporate
a sufficiently large workspace to provide enough object ran-
domization. On the other hand, both 3D representations and
pre-trained 2D visual encoders contribute to improved spatial
generalization capabilities. However, none of these methods
fundamentally resolve the spatial generalization problem. This
indicates the agent’s spatial capacity is not inherently derived
from the policy itself but instead develops through extensive
traversal of the workspace from the given demonstrations. A
more detailed analysis is provided in Appendix B2.
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Fig. 3: Quantitative benchmarking on the spatial generalization
capacity. We report the relationship between the agent’s performance
in success rates and the number of demonstrations used for training
when different visuomotor policies and object randomization ranges
are adopted. The results are averaged over 3 seeds.

IV. DemoGen METHODS

Designed to address the conflict between the substantial
data requirements of visuomotor policies and the high cost of
human-collected demonstrations, DemoGen generates spatially
augmented observation-action pairs from a small set of source
demonstrations. For actions, DemoGen parses the source tra-
jectory into object-centric motion and skill segments and
applies TAMP-based adaptation. For observations, DemoGen
efficiently synthesizes the point clouds for robots and objects
using a segment-and-transform strategy.

A. Problem Formulation

A visuomotor policy π : O 7→ A directly maps the visual
observations o ∈ O to the predicted actions a ∈ A. To train
such a policy, a dataset D of demonstrations must be prepared.
We define a source demonstration Ds0 ⊆ D as a trajectory
of paired observations and actions conditioned on an initial
object configuration: Ds0 = (d0, d1, . . . , dL−1|s0), where
each dt = (ot, at) represents an observation-action pair, s0
denotes the initial configuration, and L is the trajectory length.
DemoGen is designed to augment a human-collected source
demonstration by generating a new demonstration conditioned
on a different initial object configuration:

D̂s′0
= (d̂0, d̂1, . . . , d̂L−1|s′0).

Specifically, assuming the task involves the sequential ma-
nipulation of K objects {O1, O2, . . . , OK}, the initial object
configuration s0 is defined as the set of initial poses of these
objects: s0 = {TO1

0 ,TO2
0 , . . . ,TOK

0 }, where TO
t denotes the

SE(3) transformation from the world frame to an object O at
time step t. The action at consists of the robot arm and robot
hand commands, represented as at = (aarmt , ahandt ), where
aarmt ≜ AEE

t is the target SE(3) end-effector pose in the world
frame, and ahandt can either be a binary signal for a parallel
gripper’s open/close action or a higher-dimensional vector for
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Fig. 4: Pre-processing the source demonstration. The raw point
cloud observations are processed by cropping, clustering, and down-
sampling. The source action trajectory is parsed into motion and skill
segments by referring to the semantic masks of manipulated objects.

controlling the joints of a dexterous hand. The observation
ot includes both the point cloud data and the proprioceptive
feedback from the robot: ot = (opcdt , oarmt , ohandt ), where oarmt

and ohandt reflect the current state of the end-effector, with the
same dimensionality as the corresponding actions.

B. Pre-processing the Source Demonstration

Segmented point cloud observations. To improve the prac-
tical applicability in real-world scenarios, we utilize a single-
view RGBD camera for point cloud acquisition. The raw
point cloud observations are first preprocessed by cropping
the redundant points from the background and table surface.
We assume the retained points are associated with either the
manipulated object(s) or the robot’s end-effector. A clustering
operation [14] is then applied to filter out the outlier points in
noisy real-world observations. Subsequently, the point cloud is
downsampled to a fixed number of points (e.g., 512 or 1024)
using farthest point sampling to facilitate policy learning [38].

For the first frame of the trajectory, we employ Grounded
SAM [40] to obtain the segmentation masks for the manip-
ulated objects from the RGB image. These masks are then
applied to the pixel-aligned depth image and projected onto
the 3D point cloud, as shown in Fig. 4.

Parsing the source trajectory. Following previous work [32,
18], we assume that the execution trajectory can be parsed
into a sequence of object-centric segments. Noticing that
the robot must initially approach the object in free space
before engaging in on-object manipulation through contact,
each object-centric segment can be further subdivided into two
stages: motion and skill. For example, in the task illustrated
in Fig. 4, the trajectory is divided into four stages: 1) move to
the flower, 2) pick up the flower, 3) transfer the flower to the
vase, and 4) insert the flower into the vase.

We can easily identify the skill segments associated with
a given object by checking whether the distance between the
geometric center of the object’s point cloud and the robot’s
end-effector falls within a predefined threshold, as illustrated
by the spheres in Fig. 4. The intermediate trajectories between
two skill segments are classified as motion segments.

Formally, we represent an interval of time stamps as τ :

τ = (tstart, tstart+1, . . . , tend−1, tend) ⊆ (0, 1, . . . , L−1),

which can be used as an index sequence for the extrac-
tion of the corresponding segments from a sequence of
demonstrations, actions, or observations. For instance, d[τ ] =
(dtstart , dtstart+1, . . . , dtend−1, dtend) represents the extracted
subset of source demonstration indexed by τ . Using this
notation, we parse the source demonstration into alternating
motion and skill segments according to the index sequence
(τm

1 , τ s
1 , . . . , τ

m
K , τ s

K):

Ds0 = (d[τm
1 ], d[τ s

1 ], . . . , d[τ
m
K ], d[τ s

K ]|s0).

C. TAMP-based Action Generation

Adapting actions to the new configuration. The generation
process begins by selecting a target initial configuration s′0 =

{TO1
′

0 ,TO2
′

0 , ...,TOK
′

0 }. Under the 4×4 homogeneous matrix
representation, the spatial transformation between the target
and source configurations is computed as:

∆s0 = {(TO1
0 )−1 ·TO1

′

0 , . . . , (TOK
0 )−1 ·TOK

′

0 }.

Recall that the actions consist of both robot arm and robot
hand commands. The robot hand commands define the inter-
active actions on the object, e.g., holding the flower with the
gripper, or rolling up the dough with the dexterous hand. Since
they are invariant of the spatial transformation, ahandt should
remain unchanged regardless of the object configuration:

âhandt = ahandt , ∀ t, so, s
′
0.

In contrast, the robot arm commands should be spatially
equivariant to the object movements in order to adjust the
trajectory according to the altered configuration. Specifically,
for the motion and skill segments involving the k-th object, we
adapt the robot arm commands AEE[τm

k ],AEE[τ s
k] following

a TAMP-based procedure, illustrated by Fig. 5.
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Fig. 5: Illustrations for action generation. (Left) Actions in the
motion stage are planned to connect the neighboring skill segments.
(Right) Actions in the skill stage undergo a uniform transformation.
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Fig. 6: Illustrations for synthetic visual observation generation. Objects in the to-do stage are segmented and transformed by the target
object configurations. Objects in the doing stage are merged with the end-effector and transformed according to the proprioceptive states.

For the skill segments with dexterous on-object behaviors,
the spatial relations between end-effectors and objects must
remain relatively static. Thus, the entire skill segments are
transformed following the corresponding objects:

ÂEE[τ s
k] = AEE[τ s

k] · (T
Ok
0 )−1 ·TOk

′

0 .

For the motion segments moving in free space, the goal is
to chain adjacent skill segments. Therefore, we plan the robot
arm commands in the motion stage via motion planning:

ÂEE[τm
k ] = MotionPlan(ÂEE[τ s

k−1][−1], ÂEE[τ s
k][0]),

where the starting pose for motion planning is taken from
the last frame of the previous skill segment, and the ending
pose is from the first frame of the current skill segment. For
simple uncluttered workspaces, linear interpolation suffices.
For complex environments requiring obstacle avoidance, an
off-the-shelf motion planning method [26] is employed.

Failure-free action execution. To ensure the validity of
synthetic demonstrations without on-robot rollouts to filter
out failed trajectories, we require failure-free action execution.
Unlike previous works [32, 18] that rely on operational space
controllers and delta end-effector pose control, we employ
inverse kinematics (IK) controllers [57] and target absolute
end-effector poses. Empirically, these adjustments are found
to help minimize compounding control errors, contributing to
the successful execution of the generated actions.

D. Fully Synthetic Observation Generation

Adapting proprioceptive states. The observations consist of
point cloud data and proprioceptive states. Since the proprio-
ceptive states share the same semantics with the actions, they
should undergo the same transformation:

ôhandt = ohandt , ∀ t, so, s
′
0;

ôarmt = oarmt · (AEE
t )−1 · ÂEE

t .

It is noteworthy that we found directly replacing the current
state with the next target pose action (i.e., ôarmt ← âarmt+1 )
may impair performance, as the IK controllers may not always
achieve the exact target pose.

Synthesizing point cloud observations. To synthesize the
spatially augmented point clouds for the robot and objects, we
employ a simple segment-and-transform strategy. Apart from
the target transformations, the only required information for
synthesis is the segmentation masks for the K objects on the
first frame of the source demonstration, obtained in Sec. IV-B.

For each object, we define 3 stages. In the to-do stage, the
object is static and unaffected by the robot, and its point cloud
is transformed according to the initial object configuration
(TOk

0 )−1 · TOk
′

0 . In the doing stage, the object is in contact
with the robot, and its point cloud is merged with the end-
effector’s point cloud. In the done stage, the object remains in
its final state. These stages are easily identified by referencing
the trajectory-level motion and skill segments.

For the robot’s end-effector, its point cloud undergoes the
same transformation as indicated by the proprioceptive states
(AEE

t )−1·ÂEE
t . Given the assumption of a cropped workspace,

the point clouds for the robot and the objects in the doing stage
can be separated by subtracting the object point clouds in the
to-do and done stages from the scene point cloud.

A concrete example of this process is shown in Fig. 6.
More examples of the synthetic trajectories in real-world
experiments can be found in Fig. 21 in the appendix.

V. EXPERIMENTS IN THE SIMULATOR

A. Effectiveness: One-Shot Imitation

Before deploying DemoGen to the real world, we evaluate
its effectiveness in the simulator by training visuomotor poli-
cies on datasets generated by DemoGen from only one source
demonstration per task.
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Fig. 7: Tasks for simulated evaluation on spatial generalization. Purple and sky-blue rectangles mark the workspaces for demonstration
generation and evaluation, respectively. The detailed sizes of these workspaces are listed in Tab. VI in the appendix.

TABLE I: Simulated evaluation of DemoGen for spatial generalization. We report the maximum/averaged success rates over 3 seeds.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly Averaged

1 Source 0/0 4/4 55/50 39/23 17/16 11/11 0/0 0/0 16/13
DemoGen 76/73 92/84 100/100 95/92 100/100 100/95 79/77 86/83 91/88

10 Source 29/29 54/52 100/100 90/89 100/99 94/89 44/38 47/45 70/68
25 Source 82/74 90/84 100/100 100/100 100/100 100/100 95/93 83/79 94/91

Policy. Both in the simulator and real world, we select
DP3 [59] as the visuomotor policy, which predicts actions
by consuming point cloud and proprioception observations.
For a fair comparison, we fix the total training steps counted
by observation-action pairs for all evaluated settings, resulting
in an equal training cost regardless of the dataset size. The
training details are listed in Appendix A1.

Tasks. We design 8 tasks adapted from the MetaWorld [54]
benchmark, illustrated in Fig. 7. To strengthen the significance
of spatial generalization, we modify these tasks to have
enlarged object randomization ranges, as listed in Appendix F.

Generation and evaluation. We write scripted policies for
these tasks and prepare only 1 source demonstration per task
for demonstration generation. We also produce 10 and 25
source demonstrations per task using the scripted policy as
a reference for human-collected datasets. Based on the one
source demonstration, we leverage DemoGen to generate 100
spatially augmented demonstrations for the tasks containing
the spatial randomization of one object. Since the tasks
concerning two objects have a more diverse range of object
configurations, 200 demonstrations are generated.

Results analysis. The evaluation results for the simulated tasks
are presented in Tab. I. DemoGen significantly enhances the
policy performance compared with the source demonstration
baseline. The policies trained on DemoGen-generated datasets
also outperform those trained on 10 source demonstrations
and get close to 25 source demonstrations. This indicates
DemoGen has the potential to maintain the policy performance
with over 20× reduced human effort for data collection.

B. Limitation: The Visual Mismatch Problem

While the one-shot imitation experiment verifies the effec-
tiveness of DemoGen, it also reveals its limitation: synthetic
demonstrations generated from one source demonstration are
not as effective as the same number of human-collected
demonstrations. We attribute the performance gap to the visual
mismatch between the synthetic point clouds and those cap-

Fig. 8: Illustration for the visual mismatch problem. As objects
move through 3D space, their appearance changes due to variations in
perspective. Under the constraint of a single-view observation, syn-
thetic demonstrations consistently reflect a fixed side of the object’s
appearance seen in the source demonstration. This discrepancy causes
a visual mismatch between the synthetic and real-captured data.

Fig. 9: Performance Saturation. We report the policy performance
boost w.r.t. the increase of synthetic demonstrations over 3 seeds.

tured in the real world, under the constraint of a single-view
observation perspective. An illustration is provided in Fig. 8.

Performance saturation. A notable consequence of the visual
mismatch problem is the phenomenon of performance satura-
tion. An empirical analysis is conducted on the Pick-Cube
task. In Fig. 9(a), we fix the spatial density of target object
configurations in the synthetic demonstrations and increase
their spatial coverage by adding more synthetic demonstra-
tions. The curve indicates that the performance improvement
plateaus once the spatial coverage exceeds a certain threshold.
This saturation occurs because the visual mismatch intensifies
as the distance between the source and synthetic object config-
urations increases, making additional synthetic demonstrations
ineffective. In Fig. 9(b), a similar performance saturation effect
is observed when we increase the density while keeping the
spatial coverage fixed. This indicates excessive demonstrations
are unnecessary once they sufficiently cover the workspace.
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Fig. 10: Protocol for evaluating spatial generalization. (a) Setups on the single-arm platform. (b) Illustration for the full-size evaluation
workspace. (c) Illustration for the generation strategy targeting the evaluated configurations along with small-range perturbations.

Spatula-Egg Flower-Vase Mug-Rack

Dex-Rollup Dex-Drill Dex-Coffee

Fig. 11: Tasks for real-world evaluation on spatial generalization. Spatula-Egg and Dex-Rollup are one-stage tasks involving contact-rich
behaviors. Flower-Vase, Mug-Rack, Dex-Drill, and Dex-Coffee are two-stage tasks requiring precise manipulation.

VI. REAL-WORLD EXPERIMENTS: SPATIAL
GENERALIZATION

We assess the spatial generalization capability of visuomotor
policies enhanced by DemoGen across 8 real-world tasks
deployed on 3 different platforms. 7 tasks are performed on
single-arm platforms with parallel grippers or dexterous hand
end-effectors. Additionally, one task is executed on a bimanual
humanoid. A task summary is provided in Tab. II.

A. Single-Arm Platforms

Tasks. On the Franka Panda single-arm platform, we design
3 tasks using the original Panda gripper and 4 tasks using an
Allegro dexterous hand as the end-effector. The motion and
skill trajectories of these tasks are visualized in Fig. 11 and the
task descriptions are provided in Appendix G. For all tasks,
a single Intel Realsense L515 camera is adopted to capture
point cloud observations, as depicted in Fig. 10(a).

Evaluation protocol. To evaluate spatial generalization, we
define a large planar evaluation workspace, the size of which

TABLE II: A summary of real-world tasks for spatial generaliza-
tion evaluation. ActD: action dimension. #Obj: number of manipu-
lated objects. #Eval: number of evaluated configurations. #GDemo:
number of DemoGen-generated demonstrations.

Task Platform ActD #Obj #Eval #GDemo

Spatula-Egg Gripper 6 1 10 270
Flower-Vase Gripper 7 2 4×4 432
Mug-Rack Gripper 7 2 4×4 432
Dex-Cube Dex. Hand 22 1 10 270
Dex-Rollup Dex. Hand 22 1 12 324
Dex-Drill Dex. Hand 22 2 3×3 243
Dex-Coffee Dex. Hand 22 2 3×3 243
Fruit-Basket Bimanual 14 2 4×6 72

corresponds to the maximum reach of the robot arm. We
uniformly sample 12 points within this irregularly-shaped
workspace as the coordinates for potential object configura-
tions, with a 15cm spacing between neighboring coordinates,
as illustrated in Fig. 10(b).

To determine the actual evaluated configurations for each



TABLE III: Real-world evaluation of DemoGen for spatial generalization. For reliable evaluation, a total of 530 policy rollouts are
conducted on the 8 tasks. The success rate for each task is averaged on 5 repetitions for each evaluated configuration. The evaluated
configurations for each task are counted in Tab. II, and visualized in Fig. 12.

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket Averaged

Source 10.0 6.3 6.3 10.0 8.3 11.1 11.1 25.0 11.0
DemoGen 88.0 82.5 85.0 78.0 76.7 55.6 40.0 90.8 74.6

Spatula-Egg Flower-Vase Mug-Rack Dex-Cube

Dex-Rollup Dex-Drill Dex-Coffee Fruit-Basket

= 0% > 0% > 40% > 60% > 80%

Fig. 12: Spatial heatmaps for the real-world evaluation results. The success rate for each coordinate is calculated as the average across
all relevant trials. For example, each coordinate of the vase in the Flower-Vase task is in combination with 4 coordinates of the flower,
including the one appearing in the source demonstration. This results in a total of 20 trials, given 5 repetitions per combination.

task, we perform manual trials using kinematic teaching to
confirm the feasibility of each configuration. For example,
in the Dex-Rollup task, the dexterous hand can reach a
piece of plasticine placed in the near-robot corner of the
workspace with a vertical wrist angle. However, it cannot grasp
a kettle in the same location using a horizontal wrist angle,
as required in the Dex-Coffee task. We conduct trials on all
feasible configurations and repeat the evaluations 5 times per
configuration to ensure the reliability of the results.

Generation strategy. As in the simulated environments, we
collect only one source demonstration for each task. However,
real-world point cloud observations are often noisy, with issues
such as flickering holes in the point clouds or projective smear-
ing around object outlines. Even after performing clustering
and downsampling during the point cloud preprocessing stage
(Sec. IV-B), the imitation learning policy can overfit to these
irregularities if only one demonstration is provided.

To mitigate this issue, we replay the source demonstration
twice and capture the corresponding point cloud observations.
The altogether 3 point cloud trajectories enrich the diversity in
visual degradations and help alleviate the overfitting problem.
Since replaying twice is low-cost, we consider this approach
a beneficial tradeoff between efficiency and effectiveness.

For each task, we set the generated object configurations to
correspond to the evaluated configurations. However, human
operators cannot always place objects with perfect precision
in the real world, yet we found visuomotor policies are
sensitive to even small deviations. Thus, we further augment
the generated object configurations by adding small-range
perturbations. Specifically, for each target configuration, we
generate 9 demonstrations with (±1.5cm)× (±1.5cm) pertur-
bation to mimic slight placement variations in the real world.

The final generated configurations are shown in Fig. 10(c).
In summary, the total number of generated demonstrations

is calculated as 3 × (#Eval) × 9, which represents the 3
source demonstrations, multiplied by the number of evaluated
configurations, and further multiplied by the 9 perturbations.
The detailed counts for each task are listed in Tab. II.

Results analysis. The performance of visuomotor policies [59]
trained on 3 source demonstrations and DemoGen-generated
demonstrations are reported in Tab. III. Agents trained solely
on source demonstrations exhibit severe overfitting behaviors,
blindly replicating the demonstrated trajectory. In Appendix C,
we evaluate the policy performance trained on datasets con-
taining additional human-collected demonstrations. We found
the spatial effective range of the trained policies is upper-
bounded by the sum of demonstrated configurations, aligned
with the findings in the empirical study in Sec. III.

Similar to the effects of manually covering the workspace
with human-collected demonstrations, DemoGen-generated
datasets enable the agents to display a more adaptive response
to diverse evaluated configurations, resulting in significantly
higher success rates. DemoGen consistently enhances the
performance across all the evaluated tasks. Although the per-
formance gains are less pronounced in the Dex-Drill and Dex-
Coffee tasks, we found the policies trained on the generated
data still guide the dexterous hands to generally appropriate
manipulation poses. The relatively lower performance is pri-
marily due to stringent precision requirements.

To further investigate the generalization capabilities en-
abled by DemoGen, we visualize the spatial heatmaps for
the evaluated configurations in Fig. 12. The heatmaps reveal
high success rates on configurations close to the demonstrated
ones, while the performance diminishes as the distance from



the demonstrated configuration increases. We attribute this
decline to the visual mismatch problem caused by single-view
observations, as previously discussed in Sec. V-B.

A notable observation arises in the Dex-Rollup task, where
the policy trained on the DemoGen-generated dataset could
dynamically adjust the number of wrapping motions ranging
from 2 to 5 in response to the distinct plasticity of every
hand-molded piece of plasticine. This suggests the usage
of DemoGen is not in conflict with the resulting agent’s
closed-loop re-planning capability. The intrinsic strength of
visuomotor policies is effectively preserved.

TABLE IV: The time cost for generating real-world demonstra-
tions. The computational cost of DemoGen is measured on a single-
process procedure. Since the synthetic generation process is highly
parallelizable, it can be further accelerated using multi-processing.

Single o-a Pair A Trajectory Whole Dataset

MimicGen 2.1 s 2.1min 83.7 h
DemoGen 0.00015 s 0.010 s 22.0 s

Generation cost. We compare the time cost of real-world
demonstration generation between MimicGen [32] and De-
moGen. We estimate MimicGen’s time cost by multiplying
the duration of replaying a source trajectory by the num-
ber of generated demonstrations and adding an additional
20 seconds per trajectory for human operators to reset the
object configurations. It is important to note that MimicGen
involves continuous human intervention, while the time cost
of DemoGen is purely computational, without the involvement
of either the robot or human operators.

B. Bimanual Humanoid Platform

Task. In addition to the tasks on the single-arm platform,
we also designed a Fruit-Basket task on a Galaxea R1 robot,
illustrated in Fig. 13. The Fruit-Basket task is distinguished
from the previous tasks by three key features:

1) Bimanual manipulation. The robot simultaneously grasps
the basket with one arm and the banana with the other. The
right arm then places the basket in the center of the workspace,
while the left arm places the banana into the basket.

2) Egocentric observation. The camera is mounted on the
robot’s head [58]. While the robot’s base is immobilized in
this task, the first-person view opens opportunities for future
deployment in mobile manipulation scenarios.

3) Out-of-distribution orientations. Still using a single
human-collected demonstration, the banana is placed with
orientational offsets (i.e., 45◦, 90◦, and 135◦) relative to the
original demonstration during evaluation, while the basket
position is randomized within a 10 cm× 5 cm workspace.

Generation strategy. The generation procedure follows a
similar approach as that used for the single-arm platform.
Specifically, the human-collected demonstration is replayed
twice, yielding 3 source demonstrations in total. DemoGen
generates synthetic demonstrations by independently adapting
the actions of both arms to the respective transformations of

Bimanual Humanoid O.O.D. Orientations

rot=0° rot=45°

rot=90° rot=135°

(a) (b)
Egocentric

Observation

Bimanual 
Manipulation

Fig. 13: Bimanual humanoid platform. (a) Egocentric observations
and bimanual manipulation. (b) The Fruit-Basket task involves the
out-of-distribution orientations during evaluation.

the objects. Small-range perturbations are omitted in this task
due to the relatively lower precision requirements.

A challenge in synthesizing point cloud observations with
orientational offsets lies in the limited view provided by the
single camera, which only captures the objects’ front-facing
appearance. To address this limitation, the humanoid robot
adopts a stooping posture, enabling a near bird’s-eye view
perspective. This adjustment allows for more effective point
cloud editing to simulate full-directional yaw rotations.

Results analysis. The success rates for both the source and
generated datasets are compared in Tab. III, and the spatial
heatmap is shown in Fig. 12. The high success rate of 90.8%
demonstrates the effectiveness of DemoGen on bimanual hu-
manoid platforms and its ability to help policies generalize
to out-of-distribution orientations. A more detailed analysis is
presented in Appendix D.

VII. REAL-WORLD EXPERIMENTS: EXTENSIONS

A. Disturbance Resistance

One critical advantage of visuomotor policies is their ability
to perform closed-loop corrections under disturbances. We in-
vestigate whether a DemoGen-generated dataset, derived from
one human-collected and two replayed source demonstrations,
can train visuomotor policies equipped with such capability.

Task. We consider a Sauce-Spreading task (Fig. 14(a)) adapted
from DP [7]. Initially, the pizza crust contains a small amount

(a) (b) (c)

(d) (e)

Fig. 14: DemoGen for disturbance resistance. (a-c) Illustration,
initial, and ending states of the Sauce-Spreading task. (d) Disturbance
applied for quantitative evaluation. (e) Standard generation strategy.



t= 4

4

Fig. 15: Illustration for the ADR strategy. Asynchronous transfor-
mations are applied to the disturbed object and the robot end-effector
to simulate the disturbance resistance process.

TABLE V: Real-world evaluation of DemoGen for disturbance
resistance. Raw evaluation results and detailed definitions for the
metrics are presented in Appendix E.

Sauce Coverage Normalized Score

Regular DemoGen 34.2 40.4
DemoGen w/ ADR 61.2 92.3

Initial State 13.2 0
Human Expert 65.2 100

of sauce at its center (Fig. 14(b)). The gripper maneuvers the
spoon in hand to approach the sauce center and periodically
spread it to cover the pizza crust in a spiral pattern (Fig. 14(c)).

Evaluation protocol. During the sauce-spreading process,
disturbances are introduced by shifting the pizza crust twice
to the neighboring spots within the workspace. We consider 5
neighboring spots (Fig. 14(d)) and conduct 5 trials per spot,
resulting in 25 trials. For quantitative evaluation, we measure
the sauce coverage on the pizza crust. Additionally, we report a
normalized sauce coverage score, where 0 represents no opera-
tion taken, and 100 corresponds to human expert performance.
Detailed calculations are provided in Appendix E.

Generation strategies. A standard generation strategy selects
15 intermediate spots (Fig. 14(e)) observed during the distur-
bance process as the initial object configurations for a standard
DemoGen data generation procedure.

To specifically enhance disturbance resistance, we propose
a specialized strategy named Augmentation for Disturbance
Resistance (ADR), illustrated in Fig. 15. In ADR, the pizza
crust is artificially displaced to nearby positions at certain time
steps to simulate the disturbance. The robot’s end-effector,
holding the spoon, initially remains static and subsequently
interpolates its motion to re-approach the displaced crust
before continuing the periodic spreading motion.

Results analysis. Tab. V presents the sauce coverage and nor-
malized scores for both the standard DemoGen and the ADR-
enhanced DemoGen strategies. The ADR strategy significantly
outperforms the standard DemoGen, achieving performance
comparable to human experts. In the video, we showcase the
ADR-enhanced policy is still robust under up to 5 successive
disturbances. These findings underscore the critical role of the

Source Demo     Generated Demo

(b)  Collision Obstacle Avoidance(d)

(a) (c)

Fig. 16: DemoGen for obstacle avoidance. (ab) Policy trained on the
source demonstration collides with the unseen obstacle. (cd) Policy
trained on the generated dataset could avoid diverse-shaped obstacles.

demonstration data in enabling policy capabilities. The ability
to resist disturbances does not emerge naturally but is acquired
through targeted disturbance-involved demonstrations.

B. Obstacle Avoidance

Task. The ability to avoid obstacles is also imparted through
demonstrations containing obstacle-avoidance behaviors. To
investigate such capability, we introduce obstacles to a Teddy-
Box task, where the dexterous hand grasps the teddy bear and
transfers it into the box on the left (Fig. 16(a)). Trained on
the source demonstrations without obstacles, the visuomotor
policy fails to account for potential collisions, e.g., it might
knock over the coffee cup placed in the middle (Fig. 16(b)).

Generation strategy. To generate obstacle-involved demon-
strations, we augment the real-world point cloud observations
by sampling points from simple geometries, such as boxes
and cones, and fusing these points into the original scene
(Fig. 16(c)). Obstacle-avoiding trajectories are generated by
a motion planning tool [26], ensuring collision-free actions.

Evaluation and results analysis. For evaluation, we position
5 everyday objects with diverse shapes in the middle of the
workspace (Fig. 16(d)) and conduct 5 trials per object, result-
ing in a total of 25 trials. The agent trained on the augmented
dataset successfully bypasses obstacles in 22 out of 25 trials.
Notably, in scenarios without obstacles, the agent follows
the lower trajectory observed in the source demonstrations,
indicating its responsiveness to environmental variations.

VIII. CONCLUSION

In this work, we introduced DemoGen, a fully synthetic
data generation system designed to facilitate visuomotor pol-
icy learning by mitigating the need for large volumes of
human-collected demonstrations. Through TAMP-based action
adaption and 3D point cloud manipulation, DemoGen enables
the generation of spatially augmented demonstrations with
minimal computational cost, significantly improving spatial
generalization and policy performance across a wide range of



real-world tasks and platforms. Furthermore, we extend De-
moGen to generate demonstrations incorporating disturbance
resistance and obstacle avoidance behaviors, endowing the
trained policies with the corresponding capabilities.

Limitations. Although we have demonstrated the effectiveness
of DemoGen, it has several limitations. First, DemoGen relies
on the availability of segmented point clouds, which limits its
applicability in highly cluttered or unstructured environments.
Second, DemoGen is not suitable for tasks where spatial gen-
eralization is not required, such as in-hand reorientation [3] or
push-T [15, 7] with a fixed target pose. Third, the performance
of DemoGen is affected by the visual mismatch problem, as
previously discussed in Sec. V-B.

Future works. Future works could explore mitigating the im-
pact of visual mismatch, potentially by leveraging techniques
such as contrastive learning or 3D generative models. Another
avenue for future research is to use additional human-collected
demonstrations as source data, aiming to identify the optimal
balance between policy performance and the overall cost of
data collection.
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APPENDIX

A. Policy Training and Implementation Details

We select 3D Diffusion Policy (DP3) [59] as the visuomotor
policy used for real-world and simulated experiments. We
compare its performance against 2D Diffusion Policy (DP) [7]
in the empirical study in Sec. III. We list the training and
implementation details as follows.

1) Details for Policy Training: For a fair comparison, we fix
the total training steps counted by observation-action pairs to
be 2M for all evaluated settings, resulting in an equal training
cost regardless of the dataset size. To stabilize the training
process, we use AdamW [30] optimizer and set the learning
rate to be 1e−4 with a 500 step warmup.

In real-world experiments, we use the DBSCAN [14] clus-
tering algorithm to discard the outlier points and downsample
the number of points in the point cloud observations to 1024.
In the simulator, we skip the clustering stage and downsample
the point clouds to 512 points.

We follow the notation in the Diffusion Policy [7] paper,
where To denotes the observation horizon, Tp as the action pre-
diction horizon, and Ta denotes the action execution horizon.
In real-world experiments, we set To = 2, Tp = 8, Ta = 5.
We run the visuomotor policy at 10Hz. Since Ta indicates the
steps of actions executed on the robot without re-planning, our
horizon settings result in a closed-loop re-planning latency
of 0.5 seconds, responsive enough for conducting dexterous
retrying behaviors and disturbance resistance. In the simulator,
since the tasks are simpler, we set To = 2, Tp = 4, Ta = 3.

2) Pre-Trained Encoders for Diffusion Policies: To replace
the train-from-scratch ResNet18 [19] visual encoder in the
original Diffusion Policy architecture, we consider 3 rep-
resentative pre-trained encoders: R3M [33], DINOv2 [34],
and CLIP [39]. R3M utilizes a ResNet [19] architecture and
is pre-trained on robotics-specific tasks. DINOv2 and CLIP
employ ViT [13] architectures and are pre-trained on open-
world vision tasks. These encoders are widely used in previous
works [8, 29] to enhance policy performance.

B. Spatial Generalization Empirical Study Details

In Sec. III, we conducted an empirical study on the spatial
generalization capability of visuomotor policies. In this sec-
tion, we provide more detailed analysis of the study’s results.

1) More Analysis on the Visualization Results in Fig. 2: The
results suggest that visuomotor policies exhibit some degree of
spatial interpolation capability. Specifically, the green-colored
effective range in the sparse setting with 9 demonstrations
is significantly larger than 9 times the effective range in the
single setting. However, increased precision requirements
would make it harder to interpolate, as indicated by comparing
the two task variants under the sparse setting.

Meanwhile, extrapolation proves to be more challenging.
Although the number of demonstrations in the dense setting
is much larger than in the sparse setting, the contours of the
effective range remain similar across both cases. This suggests

more demonstrations near the center of the workspace do not
significantly extend the effective range to more distant areas.

On the whole, the spatial generalization range of visuomotor
policies can be roughly approximated by the union of the
adjacent areas around the object configurations in the provided
demonstrations. The extent of the adjacent regions is influ-
enced by the fault tolerance level required for manipulation.

2) More Analysis on the Benchmarking Results in Fig. 3:
On visuomotor policies, we find DP3 exhibits the highest spa-
tial generalization capacity compared to all 2D-based counter-
parts. Additionally, models utilizing CLIP and DINOv2 repre-
sentations achieve competitive results, significantly surpassing
the train-from-scratch baseline. This highlights the value of
pre-training on open-world vision tasks in enhancing spatial
reasoning capabilities for robotic manipulation. Notably, while
prior studies [9, 29, 1, 63] have emphasized the benefits of
3D and pre-trained encoders for visual generalization, our
findings extend these insights to spatial generalization, offering
a complementary perspective on encoder selection strategies.

On object randomization range, our experiments with half
and fixed settings demonstrate that high precision require-
ments alone do not necessarily produce challenging tasks
unless the object positions are fully randomized. This suggests
that precision requirements and spatial randomization both
contribute to the task difficulty.

On the number of demonstrations, while task performance
generally improves with an increased number of demonstra-
tions, the effect diminishes beyond a certain threshold. For
instance, in the full workspace setting with DP3 as the
policy, a 50 demonstrations increase from 100 to 150 enhances
the performance by 37%, but the increase from 150 to 200 only
improves the performance by 6%. This finding also highlights
the inherent difficulty in achieving near-perfect success rates
in robot learning systems.

3) The Precise-Peg-Insertion Task: We construct a T-
shaped peg, whose upper end has a cross-section of 6 cm ×
6 cm, and the bottom end has a cross-section of 3 cm× 3 cm.
The hole in the green socket has a cross-section of 4 cm×4 cm.
This shape enforces a strict fault tolerance of 1 cm during both
the picking and insertion stages, asking for millimeter-level
precision. Both objects are randomized in a 40 cm × 20 cm
workspace in the full setting. The randomization range is
halved into 20 cm× 10 cm in the half setting.

Full Half Fixed

Fig. 17: The Precise-Peg-Insertion task. A total of 3 workspace
sizes is considered. Purple and sky-blue rectangles mark the
workspaces for demonstration and evaluation, respectively.
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Fig. 18: Visualization of the policy performance trained on human-collected datasets. (Upper row) The demonstrated configurations.
(Bottom row) The spatial heatmaps with success rates averaged on 5 trials.
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Fig. 19: Real-world comparison between DemoGen-generated and
human-collected datasets. The DemoGen-generated dataset is based
on 3 source demonstrations.

C. Increased Human-Collected Demonstrations

In Tab. III, we compare the DemoGen-generated dataset
against 3 human-collected source demonstrations. In Fig. 19,
we provide a reference on how the increase of source demon-
strations leads to the enhancement of policy performance on
the Dex-Cube task. To further understand the policy capacity
enabled by human-collected demonstrations, we visualize the
spatial heatmaps of human-collected datasets in Fig. 18. By
comparing the demonstrated configurations and the spatial
effective range of the resulting policies, we found the policy
capacity is upper-bounded by the demonstrated configurations.
This is in line with the findings in the empirical study.

D. Detailed Analysis of the Bimanual Humanoid Experiment

The orientational augmentations share the same visual
mismatch problem as translational augmentation. The policy
performs as expected when the generated orientations are
close to the orientation in the source demonstration. As the
orientational difference increases, we observed the policy
might react to the orientation in the current visual observation
with actions for mismatched orientations.

Additionally, we found the spatial generalization problem
persists in mobile manipulation scenarios. This is mainly due
to the physical constraints of real-world environments, such
as kitchen countertops or fruit stands, as demonstrated in our
experiments, where terrain limitations prevent the base from
approaching objects at arbitrary distances. Consequently, the

Regular DemoGen DemoGen w/ ADR

Fig. 20: Raw evaluation results in the Sauce-Spreading task. (Top)
Examples of the processing results for metric calculation. (Bottom)
Compared with the regular DemoGen, the policy trained with the
ADR strategy better spreads the sauce to cover the crust under
external disturbance.

base typically moves to a fixed point at a specific distance
from the object, after which the robot conducts a standard
non-mobile manipulation process at the fixed base position.

E. Disturbance Resistance Experiments Details

1) Evaluation Metrics: The sauce coverage score is com-
puted as follows. First, we distinguish between green back-
ground and red sauce in the HSV color space. The identified
background is set to black, the sauce is set to red, and the
rest which should be the uncovered crust is set to white.
Second, due to the highlights on the sauce liquid, some small
fragmented points of the sauce may be identified as the crust.
To address this, we apply smoothing filtering followed by
dilation and erosion, where the kernel size is 9 × 9. Finally,
the coverage is calculated as the ratio of red areas (sauce) over
non-black areas (sauce + uncovered crust).

2) Raw Evaluation Results: For quantitative evaluation, we
perform 5 repetitions for each of the 5 disturbance directions,
resulting in 25 trials for both strategies.



TABLE VI: Object randomization ranges in simulated tasks. All the reported sizes have the units in centimeters.

Pick-Cube Button-Small Drawer-Close Faucet-Open Handle-Press Box-Lid Stack-Cube Assembly

Object(s) Cube Button Drawer Faucet Toaster Box × Lid Red × Green Pillar × Hole
Evaluation 40×40 40×40 15×15 30×30 20×30 (2.5×30)2 (15×15)2 (10×30)2

DemoGen 48×48 48×48 20×20 40×40 25×40 (7.5×40)2 (20×20)2 (15×40)2

F. Randomization Ranges for Simulated Tasks

In Fig. 7, we illustrated the simulated tasks for the evalu-
ation on spatial generalization. To strengthen the significance
of spatial generalization, we enlarge the original object ran-
domization ranges in the MetaWorld [54] tasks. For demon-
stration generation, we select a slightly larger range than the
evaluation workspace to avoid performance degradation near
the workspace boundaries. The detailed workspace sizes are
listed in Tab. VI.

G. Task Descriptions for Real-World Tasks

In Fig. 11, we illustrated the real-world tasks for the
evaluation on spatial generalization. We describe these tasks
in the text as follows, where we mark the verbs for motion
and skill actions in the corresponding colors.

1) Spatula-Egg. The gripper holds a spatula in hand. The
robot maneuvers the spatula to first move toward the
fried egg and then 1) slide beneath the egg, 2) lift the
egg leveraging the contact with the plate’s rim, 3) carry
the egg and maintain stable suspension.

2) Flower-Vase. The gripper moves toward the flower,
picks it up, reorients it in the air while transferring
toward the vase, and finally inserts it into the vase.

3) Mug-Rack. The gripper moves toward the mug, picks
it up, reorients it in the air while transferring toward the
rack, and hangs it onto the rack.

4) Dex-Cube. The dexterous hand moves toward the cube
and grasps up the cube.

5) Dex-Rollup. The dexterous hand moves toward a piece
of plasticine and wraps it multiple times until it is fully
coiled. The required times of the wrapping motion may
vary due to the distinct plasticity of every hand-molded
piece of plasticine.

6) Dex-Drill. The dexterous hand moves toward the drill,
grasps it up, transfers it toward the cube, and finally
touches the cube with the drill.

7) Dex-Coffee. The dexterous hand moves toward the
kettle, grasps it up, transfers it toward the coffee filter,
and finally pours water into the filter.

H. Visualization of DemoGen-Generated Trajectories

In Fig. 6, we gave a concrete example of the trajectory of
synthetic visual observations. We provide more examples in
Fig. 21 by showcasing the key frames of source and generated
demonstrations.
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Fig. 21: More examples of the trajectories consisting of synthetic visual observations.
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